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Abstract. A method is developed to establish the J-resistance function for an isotropic

linear viscoelastic solid of constant Poisson's ratio using the single-specimen technique

with constant-rate test data. The method is based on the fact that, for a test specimen of

fixed crack size under constant rate, the initiation J-integral may be established from the

crack size itself, the actual external load and load-point displacement at growth initiation,

and the relaxation modulus of the viscoelastic solid, without knowledge of the complete

test record. Since crack size alone, of the required data, would be unknown at each point

of the load-vs-load-point displacement curve of a single-specimen test, an expression is

derived to estimate it. With it, the physical J-integral at each point of the test record may

be established. Because of its basis on single-specimen testing, not only does the method

not require the use of multiple specimens with differing initial crack sizes, but avoids the

need for tracking crack growth as well.

INTRODUCTION

If a master fracture-resistance function exists for a viscoelastic material, it would -most

likely- depend on temperature and loading rate. If, in addition, the material has tearing

ability, that resistance would depend on the amount of crack growth. In either case, any

reasonably complete characterization of the fracture property function would require a

large amount of data. Under such conditions, obviating costs becomes important. Such
is the aim of the work in this document.

J-resistance, or more simply, J-R curves, characterize the fracture toughness property of

materials that fail by ductile tearing. In principle, the J-R curve of a material, whether

elastic-plastic or viscoelastic, may be constructed by testing multiple specimens having

different initial crack sizes; the curve sought being the locus of collected pairs of initial

crack size and J-integral at crack-growth initiation. To obviate cost, however, most J-R

curve testing today utilizes the single specimen technique, which requires knowledge of

the crack size corresponding to each point of the test record. Traditionally, crack sizes

have been estimated either by unloading compliance measurements, or by the change in

elastic potential with crack growth [3].

For years, researchers have been developing normalization procedures to increase the

accuracy of crack-size estimates in the single-specimen technique, especially for tests at

either elevated temperatures or high mechanical rates. Normalization has its origins in

the work of Ernst et al [5], who showed that load-separability allows the J-R curve to be
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estimated using the single-specimen technique with the load-displacement data of a test

article of known initial crack size.

In its present form, normalization utilizes the actual load-vs-load point displacement

record, the initial and final crack sizes, and an assumed analytical relation between

crack size and displacement to estimate intermediate crack sizes. The method is being

considered for adoption by several standards. In particular, a draft appendix has been

prepared and reviewed for standard ASTM E-1820 [2].

Although a bounding scheme has been used recently to apply the normalization process

to polymers and dynamically loaded elastic solids [6], a general approach to treat rate-

dependent materials is still missing. The work here is concerned with linear isotropic
viscoelastic solids with a constant Poisson's ratio. For these materials, an approach is

developed to construct the J-R function from the single-specimen technique using the
results of constant-rate tests. In essence, a relation is derived to estimate the crack size

that corresponds to each load-displacement pair of the test record, and the means to use

such information to ascertain the corresponding J-integral.

The method developed here uses the fact that, under constant-rate testing, the J-integral

at crack-growth initiation for a fracture specimen of fixed crack size may be established

from knowledge of the crack size itself, the values of load and load-point displacement

at initiation, and the relaxation modulus of the viscoelastic material, without reference

to the actual test data at that crack size. As suggested in Figure 1, the method defines a

relationship that links a generic point on the load-displacement curve of a single test

specimen with a growing crack to the curve that would correspond to an article of the
same viscoelastic material but with a crack of fixed size, and to the secant path another

test specimen of a fictitious linear elastic solid with the same crack size would follow.

Using the approach of Ernst and co-workers, as well as load and J-integral separability

of viscoelastic effects for the present class of materials, an equation is derived whose

solution yields the crack size at each load-displacement pair.
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Figure 1. Physical and linear elastic fictitious paths



LOAD DEFLECTION RELATIONSHIP IN CONSTANT-RATE TESTING

The load-vs-load-point displacement response for a fracture test of a linear viscoelastic

material of constant Poisson's ratio may be expressed as the product of two separate

functions. One of these functions accounts for geometry and Poisson's ratio, and the

other, for material heredity, in the following form [7]:

t

P(a,t)= g(a,L,v), f E(t-'r).OA.dr
o- ar _ r

(1)

In this expression, P and A represent, respectively, the externally applied load and load-

point displacement, and the symbol L is used to denote all parameters characterizing the

geometry of the test article, other than crack size, a. Also, E, is the tensile relaxation

modulus of the material, and v, its -constant- Poisson's ratio.

If the fracture test is performed at a constant rate the load-vs-displacement relationship

resembles that for a linear elastic material. This form is arrived at by direct integration

of (1), after dividing and multiplying the result by t. Mathematically:

P(a,t) = g(a,L,v). E(t). A(t) (2)

Which indeed has a linear-elastic character, except that E represents the time-averaged

value of the relaxation modulus. That is:

-- 1 '
E(t) - -. I E(s)ds

t
0

(3)

J-INTEGRAL FOR A STATIONARY CRACK IN CONSTANT RATE TESTING

Reference [7] shows the J-integral at fixed crack size for a viscoelastic solid of constant

Poisson's ratio is proportional to the area under the load-vs-load displacement record of
the fracture test. As it turns out, the factor of proportionality depends on crack size and

other relevant geometric features of the test article, and perhaps also on the -constant-
Poisson's ratio of the material at hand, but not on its relaxation modulus. Thus:

j rl(a,v,L) i= • P.dA

BN o

(4)

This expression is similar to that in current use to estimate the plastic J-integral [4]. In it,

the factor r/(a, v,L), is merely a crack-configuration function. It is related to the geometry

function, g(a,v,L), for a specimen of uniform thickness, BN, in the following manner [7]:



rl(a,v,L ) _ O[ln(g)] (5)
_a

For tests carried out under constant rate, the J-integral may be expressed as the product

of two functions. One function depends solely on the heredity of the viscoelastic solid,

and the other is the J-integral that would be obtained for a linear elastic material at the

current levels of load and displacement• The latter integral is simply called the secant

J-integral, J._.

In fact, taking a constant-rate loading history A = A. t and the load-vs-displacement

relation (2), into (4), the following is obtained, after changing integration variable and

limits, and pulling out of the integral quantities independent of the integration variable.

t

j _ rl(a,v,L) " "
BN g(a,v,L).A.A, o r •E(r) -dz"

Multiplying and dividing the previous expression by t 2 • E(t) and re-grouping:

-- !

J = rl(a,v,L ) g(a,v,L)_.E(t).A A.-11z--E(r)-dz"
B u t" E(t) t o

And, upon multiplying and dividing by 2, and again recalling expression (2):

•E(r).dr

J= 2. to --
t. E(t)

rl(a'v'L)Bu .1p(a,t). A(t)]
(6)

Or, more succinctly:

J(a,t) = or(t). J,(a,t) (7)

Where the function _t), which accounts for material viscoelasticity, and the secant J-

integral, J,, corresponding to a -fictitious- linear elastic solid, have been defined as:

!

a'(t)--2, t° _ (8)
t. E(t)

and:



J_ (a,t) - 1___)__. rl(a,v,L)- P(a,t). A(t) (9)
2" B N

The form in (7) is reminiscent -and equivalent- to the relationship between the physical

J-integral, and the viscoelastic J-integral, Jr, introduced by Schapery to characterize the

initiation fracture toughness of viscoelastic materials [8]. Because the secant J-integral

is expressed directly in terms of physical quantities, it is easier to work with than J,..

J-INTEGRAL FOR A GROWING CRACK IN CONSTANT RATE TESTING

By definition, the values of P and A are known at every point of the load-displacement

record, irrespective of whether or not the crack size, a, is known. On the other hand,

the crack-configuration function, 77,is known -and constant-only up to the onset of

crack-growth initiation. From there on, it is not known a-priori what crack size, a, is

associated with any given test pair (A,P); a fact that prevents direct use of expression

(9) to estimate J,, and hence, J. This difficulty may be circumvented by taking the total

differential of (9), considered as a function of a, and t, and by integrating the resulting

expression along paths of constant a, and constant t, as shown subsequently.

From (9), the total differential of Js becomes:

dJ_(a,t)- 1 [ drl OPA]da+ rl IOPA + PAl dt• 2"BN 'd-a--aPA+ l, 2"BuL bt <,

The indicated partial derivatives, evaluated using (2), are:

O_aa, d g -E . A - 1 d g --: _a g -_a g" E. A :-rl(a,L,v).P(a,t),

and:

g.-E.]_.t - g.A. E(s)ds = g.A.E(t)
Ot o

Combining these expressions and recalling the load-deflection relationship (2), the

definition of J,, and that constant-rate testing is involved, the following results:

r/-g.

• t.E(t) + E(s)ds dt
dJ_(a,t) = ?'(a,v,L).J,(a,t) da + 2BN

(10)

In which the following definition has been introduced for convenience:



1 d_7
7(a,v, L) -= rl(a,v,L ) (11)

rl(a,v,L) da

Expression (10) may be used to obtain J_ at any point on the load-displacement record

using any convenient load path. In particular, since under constant-rate testing t and A

are proportional, any generic point (A,P), or (t,P) of the test record may be reached, as

suggested in Figure 2, by integrating along a path of constant crack size, followed by

one at fixed time -or fixed displacement. Indeed, reaching point (t,P) along path OBC

in the figure:

J_(a,t) = i?'(a,v,L)J,(a,t) da +

ai
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Whose second term may be cast in a more useful form. Integrating by parts the first

integral inside the brackets, collecting like terms, and, using the load-displacement

relation (2), multiplying and dividing the result by t, the whole second term becomes:

J,(a,t),, - J_(ai,t ) - rl(ai'v'L)p(ai,t).A(t )
• • 2. B u

And hence:

t/

J,(a,t)= f T(a,v,L)Js(a,t) da + J,(a,,t)
ai

Or, equivalently, because time and displacement are proportional:



a

Js(a,A) = S),,(a,v,L)J_(a,A) Ada + J_(a.,A)
ai

So that, if test point (As+/, P,+¢) is reached along path a = as, followed by path A = As+l:

di+l

J,(ai+l,Ai+l) = [_)/(a,v,L)Js(a, Ai+i)da + Js(ai,Ai+l)
a i

(12)

Since along a path of constant crack size the slope of the load-deflection line is P/A:

Js (a, Ai+I) = 2. B,v - 2. B N

Which, upon multiplying and dividing by (As) 2 becomes:

And, similarly:

J,(a,t,+l) = J_(a,ti) _. Ai )

(13)

As it should be, since the secant J-integral corresponds to a linear elastic solid, however

fictitious.

With the previous results, (12) may be expressed more conveniently as:

ai+l

Js(ai+l,Ag+l)= _y(a).Js(a,Ai+l)'da +
¢1 i

(14)

Note that, although ai is known, ai+s is not. However, if As is selected close to A,+s, as and

a,+s will be close together. For this reason, the integral in the previous expression may be

evaluated approximately. Using the trapezoidal rule for this purpose, invoking (13) to

convert Js(ai ,Ai+s) to J.,(as ,Ai), and (9) to express the resulting secant J-integrals in terms

of their corresponding 77functions, the following results after rearrangement:



_ 1

1+ -_ ),'(a i)- (ai+ 1 -- a i )

r/(ai+l ) = 1

1 - _ )/(ai+ 1)" (ai+ 1 - a i)
'( Pi/Ai4_/Ai+,

•r](a,) (15)

Since the form of the crack configuration function, r/(a), may be established by analysis

of the test specimen -either exact or numerical- the function ?(a) may be obtained from

it through (11). With this, expression (15) may be solved iteratively for the crack size,

ai+l, corresponding to each test point (Pi+s, Ai+l). This requires the triplet (P<,, Ao, a,,) to

be available at the outset. Incidentally, because ai is close to ai+l, the former constitutes

a good initial estimate of the latter in the iteration process. Knowledge of the crack size

at each point of the test record permits the secant J-integral to be estimated per (9), and

the corresponding physical J-integral via (7) through (9).

The set of triplets, (ai, ti, Ji), associated with each constant-rate test will define a portion

of the J-resistance surface, J(a,t), similar to that shown with the solid line in Figure 3.

The collection of triplets from a sufficient number of tests carried out at different, but

constant, rates will define the J-resistance surface. Clearly, if the viscoelastic material in

question is thermo-rheologically simple, the time-temperature superposition may be used

to stretch the time scale of the tests in the usual manner [ 1].
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Figure 3. J-Resistance Surface of a Viscoelastic Solid

CONCLUSION

The present work is concerned with isotropic linear viscoelastic solids having a constant

Poisson's ratio. For such materials an approach is developed to construct the fracture

resistance surface using the single-specimen technique with constant-rate tests. The basis

of the proposed method is that at constant test rate and Poisson's ratio, the J-integral at

crack-growth initiation for a specimen of fixed crack size is proportional to the J-integral



of a fictitious linearelasticsolid atthesamevaluesof cracksize,load,anddisplacement.
In otherwords,it is not necessaryto haveknowledgeof thecompleteload-vs-deflection
curveateachcracksizeto obtainthecorrespondinginitiation J-integral.Thefictitious J-
integralmaybeobtainedoncethecracksizeis knownat eachpoint on thecurve. Using
thatthe loadingpathscorrespondingto thefictitious J-integralsaresecantlinesdrawn
from theorigin, anequationis developedlinking thecracksizeat agenericpoint to that
of apreviouspointclose-by. Solutionof this expressionyieldsthecracksize,andhence
thefictitiousJ-integral,andfrom it, thephysicalJ-integralsought.Theapproachmaybe
repeatedfor asmanypointsof thetestasarenecessaryto resolvetheJ-resistancecurve.

Themethoddoesnotrequireuseof multiplespecimenswith differing initial cracksizes,
andavoidstheneedfor trackingcrackgrowthaswell. Theconstancyof Poisson'sratio
mayberelaxedusingspecimenswhoseresponseis independentof it -suchassingle-
edge-notchbeams-or dependson it only weakly-as with compacttensionplates.
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